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Abstract: Recent advancements in medical imaging have greatly enhanced the application of compu-
tational techniques in digital pathology, particularly for the classification of breast cancer using in
situ hybridization (ISH) imaging. HER2 amplification, a key prognostic marker in 20–25% of breast
cancers, can be assessed through alterations in gene copy number or protein expression. However,
challenges persist due to the heterogeneity of nuclear regions and complexities in cancer biomarker
detection. This review examines semi-automated and fully automated computational methods for
analyzing ISH images with a focus on HER2 gene amplification. Literature from 1997 to 2023 is
analyzed, emphasizing silver-enhanced in situ hybridization (SISH) and its integration with image
processing and machine learning techniques. Both conventional machine learning approaches and
recent advances in deep learning are compared. The review reveals that automated ISH analysis in
combination with bright-field microscopy provides a cost-effective and scalable solution for routine
pathology. The integration of deep learning techniques shows promise in improving accuracy over
conventional methods, although there are limitations related to data variability and computational
demands. Automated ISH analysis can reduce manual labor and increase diagnostic accuracy. Future
research should focus on refining these computational methods, particularly in handling the complex
nature of HER2 status evaluation, and integrate best practices to further enhance clinical adoption of
these techniques.

Keywords: deep learning; pathologies; human epidermal growth factor receptor 2 (HER2); fluorescent
in situ hybridization (FISH); silver-enhanced in situ hybridization (SISH)

1. Introduction

Breast cancer remains the most prevalent malignancy among women worldwide,
with over 2 million new cases and nearly 630,000 deaths reported in 2018 alone [1]. The
high morbidity and mortality rates associated with breast cancer have propelled research
aimed at improving histopathologic image-based computational techniques. These tech-
niques have become essential for identifying cancer subtypes, which are critical for clinical
decision making and personalized treatment strategies. Digital pathology, powered by
advancements in imaging and computational capabilities, has emerged as a promising field
to support the precise and efficient classification of breast cancer.

The development of whole-slide digital imaging, combined with the growing im-
portance of tissue-based biomarkers for therapy stratification, has greatly expanded the
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applications of image analysis in digital pathology. Notably, techniques such as hema-
toxylin and eosin staining (H&E), immunohistochemistry (IHC), and in situ hybridization
(ISH) are regularly employed for visualizing and analyzing tissue samples. H&E remains
the cornerstone of histopathology, providing detailed cellular and tissue architecture, while
IHC targets specific proteins, aiding in the functional interrogation of tissues. ISH, which fo-
cuses on the detection of nucleic acid sequences, offers deeper insights into gene expression,
especially in cases where protein expression is insufficient or ambiguous [2].

In breast cancer diagnostics, ISH is particularly valuable for detecting HER2 gene
amplification, a critical prognostic and predictive marker for about 20–25% of breast cancers.
This amplification is commonly assessed through HER2 and CEP17 (centromere enumera-
tion probe for chromosome 17) signals, providing a quantitative measure for determining
HER2 status [3]. Although fluorescence in situ hybridization (FISH) is considered the gold
standard for HER2 testing, alternative methods such as chromogenic ISH (CISH) and silver-
enhanced ISH (SISH) have been developed to offer cost-effective solutions compatible with
bright-field microscopy (Figure 1 and Table 1).

(a) (b) (c)

Figure 1. Differenttypes of cytogenic images resulting from ISH: (a) FISH at 20× magnification,
(b) CISH at 20×magnification, and (c) SISH at 40×magnification.

Table 1. ISH applications for HER2 amplifications based on different chromogenic systems.

Technique Target Explanation Ref.

FISH HER2
gene/CEP17

Fluorescence in situ hybridization (FISH) uses fluorescent
probes to detect HER2 gene amplification and chromo-
some 17 centromere (CEP17) in tumor cells.

[3]

CISH HER2
gene/CEP17

Chromogenic in situ hybridization (CISH) uses chro-
mogenic probes that produce a colorimetric reaction, mak-
ing it easier to view HER2 gene amplification and CEP17
under a regular microscope.

[4]

SISH HER2 gene Silver-enhanced in situ hybridization (SISH) is similar to
CISH but uses silver deposition to visualize HER2 gene
amplification, allowing the use of standard bright-field
microscopy.

[5]

Despite these advancements, the interpretation of ISH images remains a complex
and time-consuming task, often requiring manual analysis by experienced pathologists.
The emergence of computational techniques—ranging from traditional image processing
algorithms to deep learning models—has the potential to automate this process, improving
diagnostic accuracy, efficiency, and reproducibility [6]. The availability of large, digitized
histopathology datasets has accelerated the application of these computational methods,
yet challenges such as data annotation and variability in staining techniques persist.

This review aims to provide a comprehensive overview of semi-automated and fully
automated ISH-based computational methods, with a particular focus on breast cancer
classification. We review the literature from 1997 to 2023, with an emphasis on image
processing techniques and machine learning models, particularly deep learning, as they
apply to HER2 gene amplification detection. Figure 2 provides a high-level breakdown
of the computational methods commonly applied in the field. Through this review, we
aim to clarify the relationships between different computational approaches, highlight
key advancements, and discuss the potential for integrating these methods into routine
pathology workflows.
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Figure 2. Breakdown of computational methods commonly used for histopathology image analysis.

1.1. Inclusion and Exclusion Criteria

To ensure the relevance and specificity of this review, the following criteria were used
to include or exclude studies:

• Inclusion Criteria: Studies that applied artificial intelligence (AI), machine learning
(ML), or deep learning (DL) techniques to the analysis of ISH images, specifically for
HER2 gene amplification detection.

• Exclusion Criteria: Papers that focused on other pathology stains (e.g., H&E, IHC) or
did not involve computational techniques.

This rest of this paper is structured as follows: Section 1.3 explores key challenges in
ISH image analysis. Section 1.6 reviews the state-of-the-art methodologies in computational
ISH analysis. Section 2 outlines common computational techniques for image processing in
pathology. Finally, Section 5 summarizes the findings and outlines recommendations for
future research directions.

1.2. In Situ Hybridization (ISH)

In situ hybridization (ISH) is a cytogenetic technique that allows for the detection,
quantification, and localization of specific nucleic acid sequences within cells or tissues at
high resolution. This method plays a pivotal role in understanding the organization, regula-
tion, and function of genes by revealing the physical positions of DNA or RNA sequences on
chromosomes or within tissues. ISH works by hybridizing a labeled probe—complementary
to the target nucleic acid—with the DNA or RNA of the tissue or chromosome under exam-
ination. The types of probes used for DNA and RNA have been comprehensively described
in earlier studies [7]. Probes can be labeled chemically or radioactively, and this labeling
allows for the precise detection of hybridization signals.

In the context of HER2 gene amplification, ISH techniques such as FISH, CISH, and
SISH are routinely used to determine gene copy number alterations, which are critical for
evaluating HER2 status in breast cancer (as shown in Table 1). Each method offers varying
advantages in terms of sensitivity, ease of use, and cost-effectiveness, with SISH being
particularly suitable for bright-field microscopy applications.

1.3. Challenges of In Situ Hybridization

The ISH process presents numerous challenges, both biological and technical, that
complicate the analysis of the resulting images. These challenges impact the accuracy,
reproducibility, and scalability of computational approaches used for automated analysis.

1.3.1. Technical Challenges

• Signal variability: ISH images often exhibit significant variability in signal intensities,
not only between the target and non-target cells but also within different regions of
the same tissue sample. This inconsistency complicates accurate signal detection and
segmentation [8].
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• Complex tissue structures: ISH images often include a mixture of cell populations
and complex tissue architectures, making it difficult to isolate and analyze regions
of interest. Overlapping or closely spaced signals, particularly in multi-probe ISH
experiments, further add to this complexity.

• Large image size: Whole-slide ISH images can be very large, requiring significant
computational power for storage, processing, and analysis. Multi-channel ISH images
with multiple probes introduce additional layers of complexity to the segmentation
and classification tasks [9].

• Tissue preparation: The requirement for very thin tissue sections (typically 3–7 µm
in thickness) introduces potential artifacts to the images, such as tearing or folding,
which can distort the analysis [9].

1.3.2. Biological Challenges

• Heterogeneous tissue samples: The biological complexity of tissues introduces vari-
ability in cell types, gene expression patterns, and tissue structures [10]. This hetero-
geneity can lead to uneven distribution of hybridization signals, further complicating
segmentation and quantification tasks.

• Overlapping signals: In biological samples, signals from adjacent cells or closely
located genes often overlap, making it difficult to accurately assign signals to specific
cells or chromosomes [11].

• Non-specific staining: Background noise and non-specific staining are common in
ISH images, reducing the contrast between the target signal and the background.
This interferes with the ability of automated systems to distinguish true signals from
artifacts, especially in low-signal regions [11].

1.4. Data Acquisition

Accurate and reproducible ISH analysis requires well-optimized protocols for data
acquisition, starting from tissue preparation to probe hybridization. In our study, the
INFORM HER2 DNA and CEN17 probes were replaced with the Ventana HER2 siler
ISH Probe Cocktail, applied using the Ventana Benchmark automated device [12]. This
method streamlines the process, reducing manual intervention and improving consistency
across samples.

The data acquisition process for SISH can be outlined as follows:

1. Sample preparation: Tissue samples are baked at 60 °C for 20 min to ensure proper
adhesion to the slides.

2. Probe hybridization: The HER2 DNA and chromosome 17 probes are denatured at
different temperatures and hybridized with the target sequences.

3. Stringency washes: Stringent washing is performed to remove any unbound probes,
ensuring high specificity of the hybridization signals.

4. Signal detection: The ultraView SISH Detection Kit is used for visualizing the HER2
and CEP17 probes, with silver deposition providing contrast for bright-field mi-
croscopy analysis.

5. Counterstaining: Hematoxylin is applied as a counterstain to enhance visualization
under a light microscope.

Compared to traditional FISH methods, the use of SISH significantly reduces the
overall time required for analysis (from 12–16 h to 6 h) and can be performed using a
standard light microscope, making it more accessible for routine pathology laboratories.

1.5. Probe Design and Labeling Techniques

The sensitivity and specificity of ISH rely heavily on the design of the probe and its
labeling technique. Probes can be classified based on their labeling method:

• Radiolabeled probes: These probes use radioactive isotopes to tag the nucleic acid
sequence of interest, offering high sensitivity but requiring specialized equipment for
detection and posing health risks [13].
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• Non-radioactive probes: Modern techniques such as biotin or digoxigenin labeling
have become more popular, offering safer alternatives that use colorimetric or fluores-
cent detection methods [14].

• Direct enzyme labeling: Enzyme-conjugated probes catalyze colorimetric reactions,
offering a straightforward way to visualize hybridization signals without the need for
secondary detection steps [15].

The development and selection of appropriate probes are critical for ensuring accurate
HER2 gene amplification analysis. Ongoing research is focused on improving the sensitivity
of these probes to detect smaller genetic aberrations, expanding the potential clinical
applications of ISH techniques.

1.6. From Glass Slide to Whole-Slide Image

The transformation of traditional glass slides into whole-slide images (WSIs) has
revolutionized the field of digital pathology, providing pathologists with the ability to view,
analyze, and share high-resolution tissue images. However, this transition requires the
precise control of the entire image acquisition pipeline, from tissue processing and staining
to scanning and image quality assurance. Table 2 summarizes some of the key challenges
in standardizing this process for clinical and research applications.

The digitization of histological slides enables advanced computational analysis, in-
cluding segmentation, feature extraction, and classification tasks that form the backbone of
AI-based ISH image analysis.

Table 2. Current computer-based image analysis limitations and potential solutions.

Issue Problem Proposed Solution

Tissue analysis and its
standardization

Processing of variabilities and
tissue harvesting

Revision of histology
techniques across centers to
improve quantitative analysis
downstream. Subspecialty
societies are involved

Image analytics Variability in scanners and
image problems

Standard quality assurance
and calibration methods are
implemented to check the
image linearity, uniformity,
and reproducibility

Data integration
Extraction of data, spanning
multiple length scales,
representation, and fusion

Data gathering and storage
should be standardized.
Development of ontologies.
New data fusion methods are
being developed

1.7. HER2 Status Evaluation

The amplification or overexpression of the HER2 oncogene is observed in approxi-
mately 20% of invasive breast carcinomas [16]. This amplification is associated with poor
prognosis, necessitating targeted therapies such as trastuzumab [17]. The accurate assess-
ment of the HER2 status is critical for making personalized therapeutic decisions in breast
cancer patients [18]. When IHC results are equivocal, such as a 2+ expression level [19],
further analysis using ISH is performed to confirm HER2 amplification. Pathologists com-
monly follow ASCO/CAP guidelines, using methods such as FISH, CISH, and SISH to
compare HER2 signals with CEP17 (chromosome 17 centromere) signals [20].

In the DISH procedure, pathologists manually count HER2 (black) and CEP17 (red)
signals under a microscope. A total of 20 cells are typically counted, and if the HER2/CEP17
ratio is borderline, an additional 20 cells are counted for more accurate results [21].
However, challenges arise in interpreting borderline and heterogeneous tumors, where
HER2-amplified cells may be concentrated in specific areas or mixed with non-amplified
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cells [22,23]. The presence of CEP17 polysomy further complicates interpretation, as it can
inflate the HER2/CEP17 ratio without indicating true amplification [24]. Subjectivity in
cell selection and technical variability across laboratories also impact the consistency of the
results [25,26].

1.8. Current Evaluation Practice

Manual HER2 ISH evaluation is a time-consuming and subjective process, heavily
reliant on the pathologists’ selection of representative cells, which may introduce selection
bias [27,28]. Various clinical guidelines, including cutoffs for signal counts, ratios, and
the fraction of amplified cells, contribute to the complexity of assessing equivocal or
heterogeneous cases. Despite these challenges, the manual evaluation process remains
widespread, though it is not yet adequately standardized. Investigations into automated
ISH evaluation have revealed discrepancies in the sampling methods, from small TMA
cores to full tissue sections [29], with sample sizes ranging from a few fields of view to
20–60 nuclei per case [30,31].

1.9. Toward Computational Digital Pathology

Efforts to automate HER2 ISH testing using computational methods have gained
attraction in recent years [29,32], with digital image analysis offering the potential to reduce
the pathologist’s workload and enhance diagnostic precision. While good-quality samples
and standardized procedures are still necessary, image analysis can serve as a valuable
decision-support tool [29,30]. The computer-assisted quantification of FISH signals has
shown promise, particularly in improving the evaluation of equivocal and heterogeneous
cases through large-scale sampling and unbiased analysis [29,31].

Despite the advancements in digital pathology for FISH and CISH stains, limited
research has been conducted on SISH stains for HER2 scoring and amplification using com-
putational methods. Our research aimed to explore the potential of high-resolution digital
HER2 SISH images to generate objective, statistically derived indicators of intratumoral
heterogeneity in the HER2 status. Such efforts are crucial for improving the accuracy and
scalability of HER2 amplification evaluation in clinical settings.

2. Computational Digital Pathology

While many healthcare and life sciences organizations recognize the potential of using
artificial intelligence to analyze whole-slide images (WSIs), developing an automated slide
analysis pipeline presents significant challenges. A functional WSI pipeline must handle a
high volume of digitized slides at low cost and with high efficiency. Computational image
analysis generally involves several key steps, which are discussed in this section. Figure 3
illustrates our proposed scheme for these steps.

Figure 3. A machine vision-based approach used in digital pathology image analysis. The red squares
in subfigure (A) indicate selected regions for machine vision analysis. The whole slide image (WSI) is
at a magnification level of 40×.



Diagnostics 2024, 14, 2089 7 of 19

Digital pathology has become central to both research and clinical diagnostics, driven
by advancements in imaging technology and the availability of efficient computational tools.
WSIs have been instrumental in this transformation, allowing for the rapid digitization of
pathology slides into high-resolution images.

2.1. Data Preprocessing

Image preprocessing typically involves the following steps:

• Noise reduction and artifact elimination: Removing irrelevant or non-informative
data, such as slide backgrounds, dust particles, or scanning artifacts.

• Dataset consistency: Ensuring the creation of a standardized and consistent dataset
by eliminating variations across different samples.

• Tiling for deep learning models: Most deep learning models cannot process gigapixel
images directly. Therefore, WSIs are split into smaller tiles, which are processed in
batches during downstream modeling.

Preprocessing is critical for using computational resources efficiently and minimizing
errors caused by noise or artifacts in the images. Tissue segmentation algorithms often
rely on effective preprocessing, as irrelevant variations can disrupt accurate image anal-
ysis. Morphological transformations, frequently used in image postprocessing, are also
employed during preprocessing to detect and remove artifacts.

Automated image analysis in digital pathology depends on the visual quantification
of image features. Pathologists use tissue segmentation algorithms based on this initial
preprocessing step [33]. Signal estimation, or saturation, is a common optical effect that
occurs when scanner software exceeds its recognition threshold for certain pixel values—
such as when detecting overexpressed genes. Yang et al. [34] proposed a mixture-based
model for spot segmentation that addresses this issue by estimating dense pixel values with
a censored component. Table 3 provides an overview of commonly used preprocessing
techniques, their applications, and constraints.

Table 3. Descriptions of common image preprocessing techniques.

Technique Description Applications Constraints

Elementary
processing [33,35]

Signal processing
filters are used to
process a group of
adjacent pixels

Smoothing and
gradient analysis for
better edge detection

Limited for complex
and non-linear signal
processing

Intensity
estimation [34,36]

The estimation of
missing pixel values
using spatial and
non-spatial analysis

Noisy pixel value
determination in
grayscale and RGB
images

Non-uniform object
lighting may require
prior knowledge

Geometric
estimation [37]

Geometric distortion
estimation using
relative motion, angle,
speed, and 2D to 3D
representation

Geometric detail
determination in
mobile robotics and
remote sensing
applications

The sensor and object
angle, location, and
relative speed must
be known

Holistic
processing [38]

A set of filters are
used for convolution
for image restoration

Identifying holistic
image features

Requires complex
stochastic analysis
and prior knowledge

Data preprocessing plays a critical role in ensuring the success of downstream model-
ing for whole-slide image analysis. Preprocessing not only reduces noise but also prepares
the images for feature extraction, segmentation, and classification tasks. Understanding
the properties and limitations of each technique is essential for developing robust, scalable
pipelines in computational digital pathology.
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2.2. Feature Extraction

Table 4 lists various feature extraction methods used in image analysis. Histopathology
images often rely on pathologists’ clinical experiences to guide feature extraction techniques.
As a result, property-based features are used as a foundation. This section covers three
main types of features: shape-based, texture-based, and color-based. Each feature type
is detailed in the following subsections, and Table 4 provides brief descriptions of the
feature-wise performances for some methods.

Table 4. Propertiesof feature descriptors.

Year Ref. Image & Stain Type SF CF TF Feature Description Accuracy

2009 [39] FISH 3 7 7 Size, circularity, and compactness were computed 96.90%

[40] ISH 7 3 7 Anti-digoxigenin (DIG) and fluorescein-labeled riboprobes –

[41] ISH 7 7 3 In Drosophila gene patterns, texture features are effective 81.90%

2010 [42] FISH 3 3 3 Discriminative features, i.e., nucleus shape and texture, are
used for the final detection of leukemia

95.00%

2011 [43] FISH 3 3 3 The contour signature and Hausdorff Dimensions are used
for classifying a lymphocytic cell

93.00%

2012 [44] FISH 3 7 7 Spindle-shaped features are extracted for the classification
of FISH cells

–

[45] M-FISH 3 3 7 Multicolor sparse imaging representation approach based
on L1-norm minimization

90.00%

[10] ISH 7 7 3 Local binary patterns or histograms are used to train the
gene classifiers based on four cerebellum layers

94.00%

2014 [46] Stained Blood Images 3 3 7 A quantitative microscopic method is used for determination
of lymphoblasts

90.00%

[47] Hyper spectral images 7 7 3 GLCM texture features are used for hyper spectral images
(HSIs)

–

2015 [48] ISH 3 3 7 Nuclei are segmented using k-means. Then, statistical and
geometric features are used for cell classification using an
SVM

98%

[49] Hyper spectral images 7 7 3 Eight texture statistical features based on gray-level co-
occurrence matrix (GLCM)

71.8%

2016 [50] Tissue images 7 3 7 Patch samples are selected based on stains on density maps
with stain color

–

[41] ISH 7 7 3 Image pixel-based DCNN is used for feature extraction 81.00%

2018 [51] DICOM files 3 3 3 The shape, gray-level co-occurence matrix, gray-level run
length matrix, and neighborhood intensity difference were
used to extract 386 texture features

80.39%

2019 [52] FISH 7 7 3 In total, 279 textural features and a machine learning
classifier-based method were used

86.00%

2020 [53] Blood Smear Images 3 3 7 Different shades of color and brightness levels are computed
from blood smears, and then the classifiers were applied

98.80%

[54] FISH 7 7 3 In total, 488 texture features were extracted from precontrast,
postcontrast, and subtraction images

83.00%

2021 [55] Microscopy 7 3 3 Homogeneous regions were segmented using clustering
techniques in the RGB color space

90%

Note: SF stands for shape features, CF stands for color features, and TF stands for texture features. The check and
cross symbols indicate that the features belong to the corresponding method and reference.
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2.2.1. Shape-Based Features

The classification of pathology images often relies on the morphology of nuclei and
cell sections. Shape and size (morphology) play a crucial role in diagnosing lesions and
cancers. Spherical or quasi-spherical shapes are easier to characterize as feature vectors
than more complex, naturally occurring cell shapes. Shape features can quantify the cell or
nucleus region by calculating attributes such as size, area, and perimeter.

For example, Ref. [56] represented color distribution in 3D cervical cancer images
using intensity data and shape details. A large annotated dataset of histological images
related to the cervix, vagina, and uterus was used in [57] to assess the quality of shape
features, such as rotation-invariant features. Shape-based features were also applied in [58]
for cervical cancer detection using unsupervised k-means clustering and geometric feature
extraction from spanning tree graphs.

Shape features have also been applied in cancer cell detection using FISH spots [39],
where automated detection and classification rules were employed to identify and count
FISH spots accurately. Similarly, Ref. [42] extracted lymphocytes from plasma and used
shape and contour features for leukemia diagnosis, while [43] introduced contour signature
and fractal features for classifying lymphocyte nuclei in leukemia cases.

Various shape-based extraction methods used for image analysis are described in
Table 4.

2.2.2. Texture-Based Features

Texture is a crucial feature for analyzing spatial patterns and tissue organization in
pathology images. Texture analysis has been widely employed for classification tasks,
particularly in pathological image analysis [59]. Texture patterns can range from pixel-level
patterns to larger structures that capture spatial relationships.

For example, ref. [60] proposed using fractal texture features based on optical density
surface areas for analyzing cervical cell images. Texture features were also effective for
detecting developmental phases in ISH images of gene expression patterns in [41], where
texture factors provided insights into Drosophila gene patterns.

Additionally, local binary patterns (LBPs) were used in [10] to analyze ISH images and
train gene classifiers for different layers of the cerebellum. Texture features have also been
applied for HER2 2+ status evaluation, where 279 texture features were extracted from
FISH images [52], and hyperspectral image compression techniques were explored in [47]
for texture-based segmentation and classification.

Table 4 lists several texture-based feature extraction methods applied in image analysis.

2.2.3. Color-Based Features

Color is one of the most widely used features in digital pathology for selecting or
rejecting cell sections. Color features are extracted in various color spaces, including RGB, to
analyze images. However, color representation varies across devices, and standardization
is essential for accurate analysis [61]. In pathology, color features help distinguish cells,
tissues, and other structures.

For example, Ref. [43] used color segmentation to analyze blood cells in leukemia
diagnosis. Blood and bone marrow smears from patients with acute lymphoblastic leukemia
were analyzed in [48] using a k-means clustering approach, and the resulting color features
were used for classification.

In M-FISH image analysis, color features are employed for chromosome classifica-
tion [45], and SVM classifiers have been used for distinguishing leukemic white blood cells
based on color features [53]. Various color-based extraction methods are summarized in
Table 4.

2.3. Segmentation

Segmentation is a critical task in image analysis, used to isolate regions of interest
(ROIs) such as cell nuclei, tissues, or tumor areas. Segmentation techniques can vary
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from threshold-based methods to more advanced approaches like region-based or ma-
chine learning techniques. Effective segmentation is vital for accurate feature extraction
and classification.

Table 5 summarizes various segmentation techniques, categorized by application (e.g.,
nuclei segmentation, cancer cell detection, tumor area detection).

Table 5. Explanations of segmentation methods used in digital pathology for nuclei and cell segmentation.

Year Pathology Image Type Application Segmentation Technique Ref.

Nuclei Segmentation ↓

2009 Cervical tissue Region-based segmenation Clustering method is used in RGB color
space for nuclei segmentation

[55]

2010 FISH Nuclei segmentation Morphologial image enhancement and wa-
tershed technique

[62]

2012 SISH HER2 gene status Number of cells, genes, number of genes
per cell (average), superimposed contour
cell image, gene image, and processing
time

[55]

2016 FISH HER2 gene status A method for nuclei segmentation from the
blue channel of the contrast-enhanced im-
age

[63]

2018 FISH Segmentation and detection of signals Enhanced nucleus segmentation and signal
detection from tile-based processing using
the adaptive thresholding

[64]

2019 FISH Segmenation and classification Two RetinaNet networks for the detection
and classification of nuclei into distinct
classes and classifing FISH signals into
HER2 or CEN17

[65]

2020 IHC Machine learning-based segmentation Annotated dataset for training machine
learning techniques, which includes firmly
packed nuclei from several tissues

[66]

Cancer cell detection ↓

2015 Microscopy Images Fast characterization of apoptotic cells Adaptive thresholding, a support vector
machine, a majority vote, and the water-
shed technique are used

[67]

Tumor area detection ↓

2021 FISH Three-dimensional scoring of fluorescence Three-dimensional FISH scoring is estab-
lished for automated z-stack images from
confocal WSI scanner

[68]

2.3.1. Thresholding-Based Segmentation

Thresholding is one of the most common segmentation techniques, particularly for
grayscale and RGB images. In threshold-based segmentation, pixel intensity is used to
create image sections, which are then analyzed based on intensity differentials. Adaptive
thresholding methods, such as Otsu’s method [69], are widely used to enhance segmenta-
tion accuracy.

For example, Ref. [70] proposed an intelligent framework for FISH data analysis using
a hybrid nuclei segmentation technique. Threshold-based segmentation methods have
also been applied for nuclei segmentation in HER2 status detection [62], where contrast
enhancement and thresholding were used for improving image quality.

Threshold-based segmentation techniques for ISH images, including examples of
CISH, FISH, and SISH images, are illustrated in Figure 4.
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(a) (b)

(c)

Figure 4. Examples of how digital photographs have been altered using grayscale-based contrast
enhancement and thresholding for different cytogenetic types of ISH: (a) scale variation in CISH at
20× magnification, (b) scale variation in FISH at 20× magnification, and (c) scale variation in SISH at
40×magnification.

2.3.2. Region-Based Segmentation

In region-based segmentation, pixels are grouped based on intensity and spatial
connectivity. This method works well for images with distinct regions, but multisegment
images may require more processing power. Clustering methods like fuzzy c-means are
often used for the soft clustering of pixels into multiple regions [71].

In [72], clustering-based segmentation was applied for identifying tumor regions, and
machine learning techniques have also been integrated for region-based segmentation
tasks [73,74]. Examples of region-based segmentation techniques applied to nuclei and
tumor detection are listed in Table 5.

2.4. Classification

This section discusses the methods used for classifying ISH pathology images. These
methods are categorized into two main subcategories: conventional classification, discussed
in Section 2.4.1, and deep learning methods, covered in Section 2.4.2.

2.4.1. Classification through Conventional Methods

The first developments in computer vision date back to the 1960s, and the field has
since become an essential part of intelligent systems in industries such as security, robotics,
autonomous vehicles, and medical imaging [75]. In digital pathology, the task of classifying
pathology images involves assigning biomarkers to different classes based on image input.
Conventional computer vision methods leverage features such as color, shape, texture,
and size to perform classification, making use of RGB images to detect disease-specific
patterns [76].

Table 6 provides a comparison of conventional and deep learning methods for ISH
image classification, highlighting their respective pros and cons.

Machine learning models such as decision trees, neural networks (NNs), K-nearest
neighbors (KNN), and support vector machines (SVMs) have been widely applied in
pathology classification tasks [77–79]. Each method offers distinct advantages: SVMs
handle linear and non-linear data mapping using kernel functions, decision trees provide a
probability-based graph for multi-class classification, and KNN is a non-parametric method
that learns from data indefinitely.

For example, Hongbao et al. [45] used minimal representation-based classifiers to
enhance chromosome analysis for cancer and genetic disease diagnostics using M-FISH
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images. Improved segmentation techniques and ensemble classifiers have also been applied
in the diagnosis of acute lymphoblastic leukemia (ALL) [46].

Table 6. A comparison of conventional and deep learning methods used in digital pathology for ISH
image classification.

Year ISH Stain ML/DL Pros and Cons Ref.

2012 M-FISH 3 (ML ) Pros: Effective for small datasets, inter-
pretable models. Cons: Limited scalabil-
ity and feature extraction capability.

[45]

2014 Leukemia 3 (ML) Pros: Simple, computationally efficient
for screening. Cons: Handcrafted fea-
tures may miss complex patterns.

[46]

2016 FISH 3 (DL) Pros: Automated feature extraction, scal-
able. Cons: Requires large datasets and
computational power.

[80]

2017 ISH 3 (DL) Pros: Learns hierarchical features from
raw images. Cons: Black-box models,
high computational requirements.

[81]

2018 Monoclonal antibody WSIs 3 (DL) Pros: High accuracy, effective for com-
plex features like cell membranes. Cons:
Training requires large amounts of anno-
tated data.

[82]

2019 ISH 3 (DL) Pros: Learns from raw pixel data. Cons:
Struggles to interpret feature representa-
tions.

[83]

2020 CISH 3 (ML) Pros: Cost-effective, interpretable. Cons:
Lower accuracy than DL methods for
complex data.

[84]

2021 ISH 3 (DL) Pros: Can handle large image datasets;
Cons: Black-box model, interpretability
challenges.

[85]

Note: ML stands for machine learning, and DL for deep learning. The table highlights the advantages (pros) and
limitations (cons) of both approaches in terms of scalability, interpretability, and computational cost.

Liew et al. [80] applied classification-based methods for FISH image analysis,
while [84] explored CISH image classification using Haralick texture features and principal
component analysis (PCA) for dimensionality reduction. Table 6 summarizes recent studies
on ISH image-based pathology disease classification.

2.4.2. Classification through Deep Learning

Deep learning has revolutionized image analysis in recent years, particularly with the
use of convolutional neural networks (CNNs) for medical imaging tasks [86,87]. CNNs
apply convolutional filters to input images, learning hierarchical feature representations
automatically, without the need for manual feature extraction. This makes CNNs especially
powerful for tasks such as pathology image classification.

CNNs are trained on large datasets, allowing them to learn from raw pixel data and op-
timize for high-level semantic features such as cell boundaries and biomarker signals [88,89].
For example, Ref. [81] proposed a deep convolutional denoising autoencoder (CDAE) for
constructing compact ISH image representations, while [82] introduced Her2Net, a deep
learning framework for HER2-stained breast cancer image analysis, which includes cell
membrane and nucleus detection, segmentation, and classification.

Similarly, Ref. [83] employed autoencoders and convolutional neural networks for
learning feature representations directly from image pixels, demonstrating the superiority
of these methods over traditional feature extraction techniques. Transfer learning strategies
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were also explored to adapt pretrained models to ISH images, improving accuracy in
biomarker detection and disease classification.

The reference work for ISH image-based pathology disease classification is summa-
rized in Table 6.

3. Image Analysis on SISH

In the realm of HER2 determination, SISH has emerged as a viable alternative to
traditional methods like FISH and CISH [90]. SISH [91,92] represents a novel approach
that leverages bright-field imaging, similar to CISH, and has been significantly enhanced
by advancements in automation. The Ventana Medical System (Tucson, AZ, USA) has
developed a fully automated system that improves the efficiency and consistency of bright-
field in situ hybridization, thereby reducing the risk of human error. This system allows
for the automated detection of chromogenic signals, enabling the simultaneous running of
HER2 and CEP17 assays on related tissue slides.

In line with the ASCO/CAP guidelines, the evaluation of HER2 gene amplification
status using SISH was conducted in a blinded fashion. The analysis involved examin-
ing 20 non-overlapping nuclei for HER2/CEP 17 signals and calculating the HER2/CEP
17 ratio. A ratio greater than 2.2 indicates HER2 gene amplification, while a ratio of 1.8
or less suggests a lack of amplification. Ratios between 1.8 and 2.2 are deemed equivocal,
necessitating the counting of signals from an additional 20 tumor nuclei in a second target
area to compute a new ratio. Benign breast epithelial cells and other adjacent benign cells
served as internal controls throughout the process.

This study’s focus on SISH was not only to validate its efficacy in HER2 status assess-
ment but also to lay the groundwork for more advanced computational analysis. Moreover,
the combination of SISH with automated image analysis presents an opportunity to create
scalable solutions capable of analyzing high-throughput HER2 assays, minimizing the
variability often observed in manual counting techniques. As discussed in our review paper,
SISH offers a promising platform for integrating computational techniques to enhance
the accuracy and scalability of HER2 analysis. The adoption of SISH in computational
pathology is particularly significant, given its compatibility with automated image analysis
systems, which are essential for handling the increasing volume and complexity of digital
pathology data.

Software Information: Image analysis was performed using MATLAB R2021b (Math-
Works, Natick, MA, USA) was used to create custom algorithms. Both software tools
were downloaded from their official websites, with MATLAB accessed from https://www.
mathworks.com/products/matlab.html, accessed on 29 July 2024.

4. Limitations of the Research Work

This study faced several limitations, including variability in tissue samples and hetero-
geneity in ISH images, which may lead to inconsistencies in image analysis. The reliance on
SISH, a newer and less widely adopted staining technique, could limit the generalizability
of the results. Additionally, the computational demands required for processing large
whole-slide images (WSIs) pose scalability challenges. Future work could focus on im-
proving algorithms for tissue heterogeneity and utilizing federated learning across clinical
institutions to address the variability in datasets. Further refinement is needed to address
complex cases of HER2 heterogeneity and to validate the findings across diverse datasets
and clinical settings.

5. Conclusions

In this paper, we have provided a comprehensive overview of the advancements in ma-
chine learning and in situ hybridization (ISH) image analysis using computational methods.
We began with an introduction to ISH images and the associated challenges, followed by a
discussion of ISH-related work and the application of computational methods in ISH stain
pathology image analysis. The computational image analysis section encompasses image

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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data acquisition, preprocessing, segmentation, feature extraction, and classification. We
assessed relevant works based on their specific technical categories under each application
goal from a computational pathology perspective. By reviewing all related studies on ISH
stains using computational image analysis methods, we identified the most popular image
feature extraction, segmentation techniques, and classification approaches.

Machine vision techniques in this sector have demonstrated a consistent overall
development trend, albeit with a cautious approach. The most cutting-edge technologies in
this field typically emerge three to five years later compared to other domains. This “slow
starter” phenomenon is primarily due to the interdisciplinary nature of the research, where
machine vision scientists often have limited knowledge of ISH stain pathology. However,
as more biomedical engineering students are educated, we expect the progress of machine
vision techniques in this field to synchronize with those in other domains.

Machine vision techniques have evolved significantly in ISH image analysis, though
the interdisciplinary nature of pathology, and AI often leads to a slower adoption of these
technologies. As these fields converge, we anticipate that digital pathology, with integrated
computational methods, will enhance the accuracy and reproducibility of HER2 assess-
ments, ultimately improving patient outcomes through personalized cancer treatment.

Furthermore, the machine vision approaches discussed in this paper can be applied
to various microscopic image analysis disciplines beyond ISH digital pathology. Recent
rapid advancements in this field have shifted the debate around digital pathology, enabling
greater accuracy and efficiency through computational pathology. While the potential of
powerful new models to support clinicians in decision making is promising, translating
these models into medical practice remains challenging. Digital pathology, distinguished
by its comprehensive image acquisition process, often involves subsampling or selecting
small tiles from a large whole-slide image (WSI), either systematically or randomly.

Figure 5 illustrates an example of computer-based nuclei and HER2 detection from a
SISH pathology image. Detecting breast cancer using the HER2 ratio with SISH stains is
complex and poses significant challenges for the automatic localization of tumor regions in
SISH WSI images. HER2 scoring follows a specified procedure, which includes several key
points and challenges:

• Selecting appropriate regions with more red and black signals from the SISH WSI
stain image.

• Localizing the nuclei region, which is difficult due to the fusion of nuclei in many
areas of the WSI.

• Choosing 20 nuclei with signals and discarding faint nuclei.
• After selecting 20 nuclei, separating the red and blue signals, ensuring that two

identical signals are not fused.

Due to these challenges, manually identifying HER2 scoring from SISH stains is not
easy. Computational techniques are necessary to automatically compute the HER2 score
from SISH stains.

(a) (b) (c) (d) (e)

Figure 5. Automated image processing-based system demonstration at 40× magnification:
(a) original SISH images, (b) preprocessed for ground truth generation, (c) nuclei-labeled ground
truth images, (d) marked labeled nuclei on the original image, and (e) marked labeled nuclei and
HER2 signals. More precise signal detection refines nuclei segmentation.
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Future Directions

ISH is a unique tissue image-based molecular analysis method used for the precise mi-
croscopic detection and localization of DNA, mRNA, and microRNA in metaphase spreads
as well as in cell and tissue preparations. In comparison, IHC (immunohistochemistry) is
invaluable for the localization, detection, and quantification of antigens, including HER2
signals. Thus, deploying automated machine learning techniques with ISH holds significant
promise for the future. Artificial intelligence (AI) provides a powerful tool for extracting
information from ISH digitized whole-slide images (WSIs). Numerous techniques have
been developed to address diverse tasks related to HER2 scoring from ISH stain images
using machine learning methods.

In the future, pathological imaging and machine vision technologies should be devel-
oped together organically, with features such as real-time pathological image processing
under a microscope or endomicroscopy (e.g., virtual staining and class labeling of patho-
logical images). Emerging AI models, such as transformers and self-supervised learning
techniques, offer significant promise in overcoming current challenges in real-time image
processing and live diagnosis, moving pathology closer to integrated, fully automated
solutions. Microscopes equipped with apps or software for the image analysis of diseased
samples can be fitted with small, high-performance CPU processors. Pathologists will be
able to monitor cells or tissue types in their actual range of vision and decide if they are
normal or abnormal in real time through these systems. They can also witness and observe
a number of virtual stained images created using basic lens staining. Simultaneously, the
related data analysis report and virtual staining image will be transmitted to a specified
mobile phone, computer, or mailbox, enabling real-time scoring. There are numerous
effective and novel strategies that can be used to attain these objectives.
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